Your Worksite is Our Laboratory.

Geotechnical Report Level One Inspection and Testing

Summerhill Estate Stage 4 Cranbourne South

Prepared for:

Streetworks Pty Ltd 4 Len Thomas Place Narre Warren 3804

Project 9897

9 March 2018

Prepared by:

TERRA FIRMA LABORATORIES Geotechnical Inspection and Testing Authority

47 National Ave Pakenham, VIC. 3810 Phone: 03 9769 5799 Fax: 03 9769 4799 Email: tseymour@terrafirmalabs.com.au

Our Head Office 47 National Ave Pakenham, VIC 3810 Our Laboratories Pakenham 03 9769 5799 Deer Park 03 8348 5596 Bibra Lake 0481 227 980

Template Version 6 January 2018

Your Worksite is Our Laboratory.

Geotechnical Report Level One Inspection and Testing Summerhill Estate Stage 4

1 Introduction

Terra Firma Laboratories was engaged by Streetworks Pty Ltd as the geotechnical inspection and testing authority to provide Level 1 supervision and testing works on the earthworks component for Summerhill Estate Stage 4. This work was conducted over the period of 28/09/2017 to 20/2/2018.

This report presents that the allotment earthworks was carried out in accordance with AS3798-2007 Guidelines for Earthworks for Commercial and Residential Development and in compliance with the compaction control specifications established by the contractor.

2 Scope of Works

2.1 Areas of work

The areas of work included lots 402, 406 to 408, 411 to 415 and 417 to 425. The site will be a residential estate.

The area on which fill was placed is shown on site plan (Appendix 1) based on drawings prepared by GPR Consulting and provided by Streetworks Pty Ltd.

The supervision work by Terra Firma Laboratories involved both inspection of sub grade preparation work and full time inspection and testing of fill placement.

2.2 Specification

The placement of fill on the areas of work was to be carried out in accordance with AS3798-2007 Guidelines for Earthworks for Commercial and Residential Development, as directed by Streetworks Pty Ltd. At all times during placement of fill materials Terra Firma Laboratories maintained a Geotechnical Technician on site to perform the supervision and testing as required by AS3798-2007.

A technical specification for compaction control requirements was provided by Streetworks Pty Ltd and established that:

As referenced from AS3798-2007 (Section 5.2) establishes a specification requirement for a minimum density ratio of not less than 95% noting that soils containing more than 20% of particles coarser than 37.5mm cannot be tested for relative compaction using the procedures of AS1289.

Field density testing shall be undertaken at a frequency of not less than 3 tests per visit.

Our Head Office 47 National Ave Pakenham, VIC 3810 Our Laboratories Pakenham 03 9769 5799 Deer Park 03 8348 5596 Bibra Lake 0481 227 980

Template Version 6 January 2018

Test Rolling is required for all layers of structural fill and materials within 150mm of permanent subgrade level so as to withstand test rolling without visible deformation or springing. Corrective action is required where unstable areas exceed 20% of the area being considered by test rolling.

3 Inspection and Testing

3.1 Sub-Grade Preparation

Subgrade preparation involved stripping the site down of topsoil and organic matter to a depth of approximately 200mm below existing levels detailed on the site plans. The sub-grade area was then proof-rolled to determine soft or otherwise unsuitable zones and such zones rectified as necessary. The sub-grade was watered and scarified prior to fill placement to aid layer bonding.

3.2 Fill materials

The materials used as fill were locally sourced and observed to generally consist of Silty Clay, sourced from stockpiled materials on site. No particles greater than 150mm were observed. The fill was nominated as clean fill by the contractor.

3.3 Fill Construction

The contractor had the following plant available on-site during the construction period for use in the fill placement:

- Excavator
- Pad Foot Roller
- Watercart
- Grader
- Trucks
- Dozer

All fill was placed in layers of thicknesses not exceeding 300mm. The work area was typically a 2 or 3 lot area on any one particular day. At the completion of a placed layer, compaction testing was performed to confirm appropriate compaction had been achieved and supported the observations made.

It was observed that finished levels were in accordance with levels marked on site by survey. These levels are shown on site plans attached in Appendix 1.

The final 300mm of fill placed across the site was placed as a topsoil layer/ growing medium and should be considered as non-structural, as it was placed in an uncontrolled manner, as allowed by specifications.

4 Compaction Control Testing

Testing comprised of a total of 27 in-situ density tests, with a summary of results included in Appendix 2. Test Reports are referenced in Appendix 3.

Test numbers 7, 8 and 10 originally failed to meet specification. Streetworks Pty Ltd were notified and asked to rework the area appropriately. Upon adequate reworking Terra Firma Laboratories would perform a re-test.; this process would continue until a minimum compaction effort of 95% was achieved.

It should be noted that the tests are a representation of the fill placed and support the visual assessment of the works completed. Each lot does not necessarily require a compaction test to comply. The compaction control testing indicated that the engineered fill on all lots complied with the technical specification.

5 Uncontrolled Works

Terra Firma Laboratories cannot verify any works completed by others after the final date specified in the introduction. Uncontrolled works may include, but not limited to trenching for services, cut and fill works for slab preparation or subsequent removal of vegetation and back fill of holes.

6 Clean Fill

Terra Firma Laboratories cannot guarantee that the material used as a filling medium is free from chemical or other contamination.

7 Statement of Compliance

Inspections and testing of the fill areas at this site indicate that both sub grade preparation and fill placement have been conducted in accordance with the specification and that the completed fill areas of greater than 300mm, as shown on the site plan attached, and not any preceding the 28/09/2017 or work completed after the 20/2/2018, may be certified as being compliant with the specification.

For and on behalf of Terra Firma Laboratories,

Segu

Tom Seymour Managing Director

Our Head Office 47 National Ave Pakenham, VIC 3810 Our Laboratories Pakenham 03 9769 5799 Deer Park 03 8348 5596 Bibra Lake 0481 227 980

Your Worksite is Our Laboratory.

Appendices

Appendix 1 Site Plan

Appendix 2 Test Summary

Appendix 3 Test Reports

Our Head Office

47 National Ave Pakenham, VIC 3810 Our Laboratories Pakenham 03 9769 5799 Deer Park 03 8348 5596 Bibra Lake 0481 227 980

Level One Test Summary

Client:	Streetworks Py L		Specification:	95%			
Project:	Summerhill Stage	e 4	Project No:	9897	9897		
Date:	Test Number:	Layer:	Retest of:	Density:	Pass/Fail:	Lot No:	Report No:
28/09/2017	1	L1		101	Pass	425	9897-1
28/09/2017	2	L1		100	Pass	424	9897-1
28/09/2017	3	L1		103	Pass	422	9897-1
15/12/2017	4	L1		98.5	Pass	418	9897-2
15/12/2017	5	L1		99.5	Pass	419	9897-2
15/12/2017	6	L1		96	Pass	420	9897-2
15/12/2017	7	L1		93.5	Fail	421	9897-2
16/12/2017	8	L2		91.5	Fail	423	9897-3
16/12/2017	9	L2		96	Pass	402	9897-3
16/12/2017	10	L1		91.5	Fail	407	9897-3
19/12/2017	11	L1	7	97	Pass	421	9897-4
19/12/2017	12	L3		95	Pass	420	9897-4
19/12/2017	13	L3		101	Pass	419	9897-4
19/12/2017	14	L3		103	Pass	418	9897-4
19/02/2018	15	L1		102.5	Pass	417	9897-5
19/02/2018	16	L1		95	Pass	415	9897-5
19/02/2018	17	L2		98	Pass	414	9897-5
19/02/2018	18	L2	8	99	Pass	423	9897-5
19/02/2018	19	L1	10	97.5	Pass	407	9897-5
19/02/2018	20	L3		97	Pass	407	9897-5
19/02/2018	21	L2		104	Pass	408	9897-6
19/02/2018	22	FSL		96.5	Pass	402	9897-6
19/02/2018	23	L2		96	Pass	412	9897-6
19/02/2018	24	L2		97	Pass	413	9897-6
20/02/2018	25	L2		96.5	Pass	411	9897-7
20/02/2018	26	FSL		104	Pass	408	9897-7
20/02/2018	27	FSL		96	Pass	406	9897-7

BY NUCLEAR GAUGE METHOD

47 National Avenue, Pakenham VIC 3810	ational Avenue, Pakenham VIC 3810 5943 0980 www.terrafirmalabs.com.au							
Client Streetworks			Feature	Block Fill	date of issue tested by	05-Oct-2017 AA		
Client address 4 Len Thomas Place, Narre	Warren, 3805	5			time	All Day		
Project Summer Hill Stage 4		Layer thickness (mm) 300	date	28-Sep-2017			
Location Cranbourne South					checked by	CC		
Field density test procedure AS1289.2.1.1 and 5.8	3.1							
Test No 1		1	2	3				
location Lot No		425	424	422				
Sampling procedures AS1289.1.1,1.2.1-Clause 6.	4(b)							
depth from F.S.L.	m	Layer 1	Layer 1	Layer 1				
measurement depth	mm	275	275	225				
field wet density	t/m ³	2.03	2.05	2.06				
field dry density	t/m ³	1.70	1.71	1.76				
field moisture content	%	19.9	19.4	16.6				
laboratory compaction procedure AS1289 5.7	7.1		1					
compactive effort		standard	standard	standard				
oversize material retained on AS sieve	mm	19.0	19.0	19.0				
percent of oversize material	wet	0	0	0				
peak converted wet density	t/m ³	2.01	2.05	2.00				
adjusted peak converted wet density	t/m ³	-	-	-				
moisture variation from OMC (-dry,+wet)%		-1.0	0.0	-2.5				
Moisture ratio	%	96.0	100.0	87.5				
Hilf density ratio (R _{HD})	%	101.0	100.0	103.0				

1

material description

Gravelly Silty Clay

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian national standards. Accredited for compliance with ISO/IEC 17025- Testing

LABORATORY ACCREDITATION No 15357

Approved Signature

BY NUCLEAR GAUGE METHOD

47 National Avenue, Pakenham VIC 3810								
ph 03 5943 0980 www.terrafirmalabs.com.a	au				date of issue	20-Dec-2017		
Client Streetworks			Feature	Block Fill		tested by	BM	
Client address 4 Len Thomas Place, Narre	e Warren, 3805	5				time	PM	
Project Summer Hill Stage 4			Layer thickness (mm) 300		date	15-Dec-2017	
Location Cranbourne South						checked by	CC	
Field density test procedure AS1289.2.1.1 and 5	5.8.1							
Test No		4	5	6	7			
location Lot No		418	419	420	421			
Sampling procedures AS1289.1.1,1.2.1-Clause	6.4(b)							
depth from F.S.L.	m	Layer 1	Layer 1	Layer 1	Layer 1			
measurement depth	mm	275	275	275	275			
field wet density	t/m ³	2.06	1.99	1.92	1.88			
field dry density	t/m ³	1.80	1.70	1.65	1.56			
field moisture content	%	14.4	16.9	16.6	20.1			
laboratory compaction procedure AS1289 5	5.7.1							
compactive effort		standard	standard	standard	standard			
oversize material retained on AS sieve	mm	19.0	19.0	19.0	19.0			
percent of oversize material	wet	0	0	0	0			
peak converted wet density	t/m ³	2.09	2.08	2.00	2.01			
adjusted peak converted wet density	t/m ³	-	-	-	-			
moisture variation from OMC (-dry,+wet)%		-1.0	1.0	0.0	1.5			
Moisture ratio	%	94.5	106.0	100.0	109.0			
Hilf density ratio (R _{HD})	%	98.5	95.5	96.0	93.5			

material description

Sandy CLAY

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian national standards. Accredited for compliance with ISO/IEC 17025- Testing

LABORATORY ACCREDITATION No 15357

Approved Signature

BY NUCLEAR GAUGE METHOD

National Avenue, Pakenham VIC 3810 03 5943 0980 www.terrafirmalabs.com.au							
	5	Feature	Block Fill	tested by	20-Dec-2017 BM All Day		
Wallen, 5000)	Laver thickness	(mm) 300		16-Dec-2017		
		Layer inickness	ining 300	checked by	CC		
8.1							
	8	9	10				
	423	402	407				
.4(b)							
m	Layer 2	Layer 2	Layer 1				
mm	275	275	275				
t/m ³	1.88	1.91	1.84				
t/m ³	1.57	1.60	1.52				
%	19.5	18.8	21.5				
.7.1							
	standard	standard	standard				
mm	19.0	19.0	19.0				
wet	0	0	0				
0	2.05	1.98	2.01				
t/m³	-	-	-				
	1.0	0.0	0.5				
%	105.0	100.0	103.5				
%	91.5	96.0	91.5				
8	Warren, 3805	Warren, 3805 8.1 8.1 8.1 8.1 8 423 423 423 4(b) m Layer 2 mm 275 t/m ³ 1.88 t/m ³ 1.57 % 19.5 7.1 7.1 5tandard mm 19.0 wet 0 t/m ³ 2.05 t/m ³ - 1.0 7.1 1.0 7.1 1.0 7.1 1.0	Warren, 3805 Feature Layer thickness (8.1 8 9 8.1 8 9 423 402 .4(b) Layer 2 Layer 2 m Layer 2 Layer 2 mm 275 275 t/m³ 1.88 1.91 t/m³ 1.57 1.60 % 19.5 18.8 7.1 Standard Standard wet 0 0 t/m³ 2.05 1.98 t/m³ - - 1.0 0.0 % 105.0 100.0	Warren, 3805 Feature Block Fill Layer thickness (mm) 300 8.1 8 9 10 423 402 407 423 402 407 .4(b) - - m Layer 2 Layer 1 mm 275 275 1.60 1.52 % 19.5 18.8 7.1 - - standard standard standard mm 19.0 19.0 wet 0 0 1.0 0.0 0.5 % 105.0 100.0 103.5	Warren, 3805 Feature Block Fill tested by time date checked by Layer thickness (mm) 300 100 100 100 8.1 402 407 100 100 100 423 402 407 100		

•

Gravelly Silty Clay

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian national standards. Accredited for compliance with ISO/IEC 17025- Testing

LABORATORY ACCREDITATION No 15357

BY NUCLEAR GAUGE METHOD

47 National Avenue, Pakenham VIC 3810	ational Avenue, Pakenham VIC 3810 5943 0980 www.terrafirmalabs.com.au							
Client Streetworks			Feature	Block Fill	date of issue tested by	21-Dec-2017 BM		
Client address 4 Len Thomas Place, Narre	Warren, 3805	5				time	All Day	
Project Summer Hill Stage 4			Layer thickness (mm) 300		date	19-Dec-2017	
Location Cranbourne South						checked by	CC	
Field density test procedure AS1289.2.1.1 and 5.	8.1							
Test No		11	12	13	14			
location Lot No		421 Retest of 7	420	419	418			
Sampling procedures AS1289.1.1,1.2.1-Clause 6.								
depth from F.S.L.	m	Layer 1	Layer 3	Layer 3	Layer 3			
measurement depth	mm	275	275	275	275			
field wet density	t/m³	1.95	1.94	2.04	2.01			
field dry density	t/m ³	1.68	1.63	1.77	1.66			
field moisture content	%	15.5	19.4	14.8	21.0			
laboratory compaction procedure AS1289 5.	7.1		T			- <u>1</u>		
compactive effort		standard	standard	standard	standard			
oversize material retained on AS sieve	mm	19.0	19.0	19.0	19.0			
percent of oversize material	wet	5	0	0	0			
peak converted wet density	t/m ³	-	2.05	2.01	1.95			
adjusted peak converted wet density	t/m ³	2.00	-	-	-			
moisture variation from OMC (-dry,+wet)%		-1.5	0.0	-2.0	-1.5			
Moisture ratio	%	91.0	101.0	88.0	92.0			
Hilf density ratio (R _{HD})	%	97.0	95.0	101.0	103.0			

material description

Gravelly Silty Clay

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian national standards. Accredited for compliance with ISO/IEC 17025- Testing

LABORATORY ACCREDITATION No 15357

Approved Signature

BY NUCLEAR GAUGE METHOD

47 National Avenue, Pakenham VIC 3810	National Avenue, Pakenham VIC 3810 03 5943 0980 www.terrafirmalabs.com.au								
Client Streetworks		_	Feature	Block Fill	date of issue tested by	23-Feb-2018 MH			
Client address 4 Len Thomas Place, Narre	warren, 3805))		time	All Day		
Project Summer Hill Stage 4			Layer thickness (mm) 300		date	19-Feb-2018		
Location Cranbourne South						checked by	CC		
Field density test procedure AS1289.2.1.1 and 5.	8.1								
		15	16	17	18	19	20		
location Lot No		417	415	414	423 Retest of #8	407 Retest of # 10	407		
Sampling procedures AS1289.1.1,1.2.1-Clause 6 depth from F.S.L.	.4(b) m	Layer 1	Layer 1	Layer 2	Layer 2	Layer 1	Layer 3		
measurement depth	mm	275	275	275	275	275	275		
field wet density	t/m ³	2.14	1.98	2.02	1.99	1.99	1.98		
field dry density	t/m ³	1.97	1.76	1.78	1.65	1.64	1.62		
field moisture content	%	8.9	12.8	14.0	20.7	20.9	22.4		
laboratory compaction procedure AS1289 5.	.7.1								
compactive effort		standard	standard	standard	standard	standard	standard		
oversize material retained on AS sieve	mm	19.0	19.0	19.0	19.0	19.0	19.0		
percent of oversize material	wet	0	0	0	0	0	0		
peak converted wet density	t/m ³	2.09	2.08	2.06	2.01	2.04	2.04		
adjusted peak converted wet density	t/m ³	-	-	-	-	-	-		
moisture variation from OMC (-dry,+wet)%		-2.0	-1.5	-2.0	-1.5	0.0	0.0		
Moisture ratio	%	83.5	89.0	86.0	93.5	99.0	99.5		
Hilf density ratio (R _{HD})	%	102.5	95.0	98.0	99.0	97.5	97.0		

material description

Gravelly Silty Clay

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian national standards. Accredited for compliance with ISO/IEC 17025- Testing

LABORATORY ACCREDITATION No 15357

Approved Signature

BY NUCLEAR GAUGE METHOD

47 National Avenue, Pakenham VIC 3810	ational Avenue, Pakenham VIC 3810 3 5943 0980 www.terrafirmalabs.com.au							
Client Streetworks		_	Feature	Block Fill	date of issue tested by	23-Feb-2018 MH		
Client address 4 Len Thomas Place, Narre	Warren, 3805)				time	All Day	
Project Summer Hill Stage 4			Layer thickness (mm) 300		date	19-Feb-2018	
Location Cranbourne South						checked by	CC	
Field density test procedure AS1289.2.1.1 and 5.	8.1							
Test No 21		21	22	23	24			
location Lot No		408	402	412	413			
Sampling procedures AS1289.1.1,1.2.1-Clause 6	.4(b)							
depth from F.S.L.	m	Layer 2	FSL	Layer 2	Layer 2			
measurement depth	mm	275	275	275	275			
field wet density	t/m ³	1.98	2.03	1.97	1.95			
field dry density	t/m ³	1.57	1.75	1.68	1.70			
field moisture content	%	25.6	15.6	17.1	14.6			
laboratory compaction procedure AS1289 5.	7.1							
compactive effort		standard	standard	standard	standard			
oversize material retained on AS sieve	mm	19.0	19.0	19.0	19.0			
percent of oversize material	wet	0	0	0	5			
peak converted wet density	t/m ³	1.90	2.10	2.05	-			
adjusted peak converted wet density	t/m³	-	-	-	2.01			
moisture variation from OMC (-dry,+wet)%		-2.0	0.5	-0.5	-2.0			
Moisture ratio	%	93.0	102.5	98.0	87.5			
Hilf density ratio (R _{HD})	%	104.0	96.5	96.0	97.0			

material description

Gravelly Silty Clay

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian national standards. Accredited for compliance with ISO/IEC 17025- Testing

LABORATORY ACCREDITATION No 15357

C Caulfield

/ersion 6 October 2016

BY NUCLEAR GAUGE METHOD

47 National Avenue, Pakenham VIC 3810					report No	9897-7
ph 03 5943 0980 www.terrafirmalabs.com.au	u		_		date of issue	23-Feb-2018
Client Streetworks			Feature	Block Fill	tested by	MH
Client address 4 Len Thomas Place, Narre	Warren, 3805	5			time	All Day
Project Summer Hill Stage 4	,		Layer thickness (mm) 300	date	20-Feb-2018
Location Cranbourne South				,	checked by	CC
Field density test procedure AS1289.2.1.1 and 5.	8.1					
Test No	-	25	26	27		
location Lot No		411	408	407		
Sampling procedures AS1289.1.1,1.2.1-Clause 6	4(b)					
depth from F.S.L.	m	Layer 2	FSL	FSL		
measurement depth	mm	275	275	275		
field wet density	t/m ³	1.99	2.09	1.98		
field dry density	t/m ³	1.65	1.76	1.70		
field moisture content	%	20.6	18.3	16.1		
laboratory compaction procedure AS1289 5.	.7.1			· · · · · · · · · · · · · · · · · · ·		
compactive effort		standard	standard	standard		
oversize material retained on AS sieve	mm	19.0	19.0	19.0		
percent of oversize material	wet	0	4	0		
peak converted wet density	t/m ³	2.06	-	2.06		
adjusted peak converted wet density	t/m ³	-	2.00	-		
moisture variation from OMC (-dry,+wet)%		1.0	-3.0	-1.5		
Moisture ratio	%	104.5	85.5	91.0		
Hilf density ratio (R _{HD})	%	96.5	104.0	96.0		

1

material description

Gravelly Silty Clay

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian national standards. Accredited for compliance with ISO/IEC 17025- Testing

LABORATORY ACCREDITATION No 15357

Approved Signature