

COMPACTION ASSESSMENT

		Job No	18077
CIVIL GEOTE	CHNICAL SERVICES	Report No	18077/R001
6 - 8 Rose Ave	nue, Croydon, Vic 3136	Date Issued	06/02/2018
Client	WINSLOW CONSTRUCTORS PTY LTD (CAMPBELLFIELD)	Tested by	AC
Project	ASTON - STAGE 29	Date tested	05/02/18

		Layer thickn	iess	150	mm	Time:	14:29:37
AS 12892.1.1 & 5.8.1							
Test No		1	2	3	4	5	6
Location			Dis	tinction Aver	nue		Future Wa
Cha	ainage	160	210	260	310	360	80
	Offset	1.8	1.8	1.8	1.8	1.8	1.8
	5//601	north	south	north	south	north	east
		of kerb	of kerb	of kerb	of kerb	of kerb	of kerb
Approximate depth from F.S.L.	т	011010					
Measurement depth	mm	125	125	125	125	125	125
Field wet density	t∕m³	2.15	2.19	2.15	2.15	2.16	2.15
Field dry density	t/m³	2.10	2.15	2.11	2.11	2.11	2.11
Field moisture content	%	2.5	2.0	2.5	2.0	2.5	1.5
Material source and location			40mr	n Capping - I	MVQ. Donnv	brook	
Material source and location Compactive effort			40mr	STAN	MVQ, Donny DARD	brook	
Compactive effort Maximum Dry Density	t/m³		40mr	STAN 2.1	DARD 14	brook	
Compactive effort Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1	<i>t/m</i> ³ %			STAN 2. 10	DARD 14 .0	•	
Compactive effort Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1 Oversize rock retained on sieve	% mm	37.5	40mr 37.5	STAN 2.1	DARD 14	brook 37.5	37.5
Compactive effort Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1 Oversize rock retained on sieve Percent of oversize material	% mm wet	37.5		STAN 2. 10	DARD 14 .0	•	37.5
Compactive effort Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1 Oversize rock retained on sieve Percent of oversize material Percent of oversize material	% mm wet dry	37.5		STAN 2. 10	DARD 14 .0 37.5	•	37.5 - -
Compactive effort Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1 Oversize rock retained on sieve Percent of oversize material Percent of oversize material Adjusted Maximum Dry Density	% mm wet dry t/m ³	-		STAN 2. 10	DARD 14 .0 37.5	•	
Compactive effort Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1 Oversize rock retained on sieve Percent of oversize material Percent of oversize material	% mm wet dry	-		STAN 2. 10 37.5 -	DARD 14 .0 37.5 -	•	-
Compactive effort Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1 Oversize rock retained on sieve Percent of oversize material Percent of oversize material Adjusted Maximum Dry Density	% mm wet dry t/m ³			STAN 2. 10 37.5 - - -	DARD 14 .0 37.5 - -	•	
Compactive effort Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1 Oversize rock retained on sieve Percent of oversize material Percent of oversize material Adjusted Maximum Dry Density Adjusted Optimum Moisture Content	% mm wet dry t/m ³		37.5 - - - -	STAN 2. 10 37.5 - - - -	DARD 14 .0 37.5 - - - -	37.5 - - - -	
Compactive effort Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1 Oversize rock retained on sieve Percent of oversize material Percent of oversize material Adjusted Maximum Dry Density Adjusted Optimum Moisture Content Moisture Variation From	% mm wet dry t/m ³	- - - 7.5%	37.5 - - - 8.0%	STAN 2. 10 37.5 - - - 7.5%	DARD 14 10.0 37.5 - - - - 8.0%	37.5 - - - - 7.5%	- - - - 8.5%

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/National standards. Accredited for compliance to ISO/IEC 17025. Accreditation No 9909

mll a

A581ASSIGNED V1.13 MAR 13

		Job No	18077
CIVIL GEOTE	ECHNICAL SERVICES	Report No	18077/R002
6 - 8 Rose Ave	enue, Croydon, Vic 3136	Date Issued	06/02/2018
Client	WINSLOW CONSTRUCTORS PTY LTD (CAMPBELLFIELD)	Tested by	AC
Project	ASTON - STAGE 29	Date tested	05/02/18
Location	CRAGIEBURN	Checked by	JHF

	Layer	r thickne	ess	150	mm	Time:	14:37:21
AS 12892.1.1 & 5.8.1							
Test No		7	8	9	10	11	12
Location	Future	e Way	Scenery				Broadwalk
		ay	drive				rise
Chair	age 3	30	190	240	290	340	30
Of	fset 1	.8	1.8	1.8	1.8	1.8	1.8
	We	est	south	north	south	north	east
	of k	kerb	of kerb	of kerb	of kerb	of kerb	of kerb
Approximate depth from F.S.L.	т						
Measurement depth	<i>mm</i> 12	25	125	125	125	125	125
Field wet density	/m³ 2.	.15	2.14	2.17	2.16	2.23	2.20
Field dry density	/m³ 2.1	12	2.09	2.12	2.11	2.18	2.13
Field moisture content	% 2	2.0	2.5	2.5	2.5	2.5	3.5
Material source and location		40mm Capping - MVQ, Donnybrook STANDARD					
Material source and location Compactive effort Maximum Dry Density	/m ³		40mn	STAN	DARD	brook	
Compactive effort	/m³ %		40mn		DARD I4	brook	
Compactive effort Maximum Dry Density a Optimum Moisture Content Test procedure AS 1289.5.4.1	%	7.5		STAN 2.1 10	DARD 14 .0		37.5
Compactive effort Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1 Oversize rock retained on sieve	% mm 37	7.5	40mn 37.5	STAN 2. ′ 10 37.5	DARD 14 .0 37.5	37.5	37.5
Compactive effort Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1 Oversize rock retained on sieve Percent of oversize material	% mm 37 wet	-		STAN 2.1 10	DARD 14 .0		37.5
Compactive effort Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1 Oversize rock retained on sieve Percent of oversize material Percent of oversize material	% mm 37 wet	-		STAN 2.* 10 37.5 -	DARD 14 .0 37.5 -		37.5
Compactive effort Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1 Oversize rock retained on sieve Percent of oversize material Percent of oversize material	% mm 37 wet dry /m ³	-		STAN 2.* 10 37.5 -	DARD 14 .0 37.5 -		37.5 - - - -
Compactive effort Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1 Oversize rock retained on sieve Percent of oversize material Percent of oversize material Adjusted Maximum Dry Density Adjusted Optimum Moisture Content	% mm 37 wet - dry - /m³ - % -	-	37.5 - - - -	STAN 2.' 10 37.5 - - - -	DARD 14 .0 37.5 - - - -	37.5 - - - -	-
Compactive effort Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1 Oversize rock retained on sieve Percent of oversize material Percent of oversize material Adjusted Maximum Dry Density Adjusted Optimum Moisture Content	% mm 37 wet - dry - /m³ - % - 8.0 -	- - - 0%	37.5 - - - - 7.5%	STAN 2.' 10 37.5 - - - 7.5%	DARD 14 .0 37.5 - - - - 7.5%	37.5 - - - 7.5%	- - - - 6.5%
Compactive effort Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1 Oversize rock retained on sieve Percent of oversize material Percent of oversize material Adjusted Maximum Dry Density Adjusted Optimum Moisture Content	% mm 37 wet - dry - /m³ - % - 8.0 -	-	37.5 - - - -	STAN 2.' 10 37.5 - - - -	DARD 14 .0 37.5 - - - -	37.5 - - - -	-
Compactive effort Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1 Oversize rock retained on sieve Percent of oversize material Percent of oversize material Adjusted Maximum Dry Density Adjusted Optimum Moisture Content	% mm 37 wet - dry - /m³ - % - 8.0 -	- - - 0%	37.5 - - - - 7.5%	STAN 2.' 10 37.5 - - - 7.5%	DARD 14 .0 37.5 - - - - 7.5%	37.5 - - - 7.5%	- - - - 6.5%

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/National standards. Accredited for compliance to ISO/IEC 17025. Accreditation No 9909

mll a

A581ASSIGNED V1.13 MAR 13

		Job No	18077
CIVIL GEOTE	CHNICAL SERVICES	Report No	18077/R003
6 - 8 Rose Ave	nue, Croydon, Vic 3136	Date Issued	06/02/2018
Client	WINSLOW CONSTRUCTORS PTY LTD (CAMPBELLFIELD)	Tested by	AC
		Data testad	05/02/18
Project	ASTON - STAGE 29	Date tested	05/02/16

AS 12892.1.1 & 5.8.1							
Test No		13	14	15	16	17	18
Location		С	ommand Roa	ad	В	roadwalk Ris	se
Ch	ainage	130	80	30	180	130	80
	Offset	1.8	00 1.8	30 1.8	1.8	1.8	1.8
	Unser	east	west	east	west	east	west
		of kerb	of kerb	of kerb	of kerb	of kerb	of kerb
Approximate depth from F.S.L.	т						
Measurement depth	mm	125	125	125	125	125	125
Field wet density	t∕m³	2.16	2.21	2.25	2.18	2.21	2.16
Field dry density	t∕m³	2.11	2.16	2.17	2.14	2.17	2.12
Field moisture content	%	2.5	2.5	3.5	2.0	2.0	2.5
· · · · · · · · · · · · · · · · · · ·			40mr	=====	/2018 MVQ, Donny	brook	
Date of assignment Material source and location Compactive effort			40mr	n Capping - I	/2018 VVQ, Donny DARD	brook	
Material source and location	t/m³		40mr	n Capping - I	MVQ, Donny DARD	brook	
Material source and location Compactive effort	<i>t/m</i> ³ %		40mr	n Capping - I STAN	MVQ, Donny DARD 14	brook	
Material source and location Compactive effort Maximum Dry Density Optimum Moisture Content	-		40mr	n Capping - I STAN 2.	MVQ, Donny DARD 14	brook	
Material source and location Compactive effort Maximum Dry Density	-	37.5	40mr 37.5	n Capping - I STAN 2.	MVQ, Donny DARD 14	brook 37.5	37.5
Material source and location Compactive effort Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1	%	37.5		n Capping - I STAN 2. 10	MVQ, Donny DARD 14 .0		37.5
Material source and location Compactive effort Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1 Oversize rock retained on sieve	% mm	37.5		n Capping - I STAN 2. 10	MVQ, Donny DARD 14 .0		37.5 - -
Material source and location Compactive effort Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1 Oversize rock retained on sieve Percent of oversize material	% mm wet	-		n Capping - I STAN 2. 10	MVQ, Donny DARD 14 .0		-
Material source and location Compactive effort Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1 Oversize rock retained on sieve Percent of oversize material Percent of oversize material	% mm wet dry	-		n Capping - STAN 2. 10 37.5 - -	WVQ, Donny DARD 14 .0 37.5 - -		-
Material source and location Compactive effort Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1 Oversize rock retained on sieve Percent of oversize material Percent of oversize material Adjusted Maximum Dry Density Adjusted Optimum Moisture Content	mm wet dry t/m ³		37.5 - - - -	n Capping - STAN 2.' 10 37.5 - - - -	WVQ, Donny DARD 14 .0 37.5 - - - - -	37.5 - - - -	-
Material source and location Compactive effort Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1 Oversize rock retained on sieve Percent of oversize material Percent of oversize material Adjusted Maximum Dry Density Adjusted Optimum Moisture Content	mm wet dry t/m ³	- - - 7.5%	37.5 - - - 7.5%	n Capping - 1 STAN 2. ' 10 37.5 - - - 6.5%	WVQ, Donny DARD 14 .0 37.5 - - - - 8.0%	37.5 - - - - 8.0%	- - - 7.5%
Material source and location Compactive effort Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1 Oversize rock retained on sieve Percent of oversize material Percent of oversize material Adjusted Maximum Dry Density Adjusted Optimum Moisture Content	mm wet dry t/m ³		37.5 - - - -	n Capping - STAN 2.' 10 37.5 - - - -	WVQ, Donny DARD 14 .0 37.5 - - - - -	37.5 - - - -	-
Material source and location Compactive effort Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1 Oversize rock retained on sieve Percent of oversize material Percent of oversize material Adjusted Maximum Dry Density Adjusted Optimum Moisture Content Moisture Variation From Optimum Moisture Content	mm wet dry t/m ³	- - - 7.5%	37.5 - - - 7.5%	n Capping - STAN 2.1 10 37.5 - - - - 6.5% dry	WVQ, Donny DARD 14 .0 37.5 - - - - 8.0%	37.5 - - - - 8.0%	- - - 7.5%
Material source and location Compactive effort Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1 Oversize rock retained on sieve Percent of oversize material Percent of oversize material Adjusted Maximum Dry Density Adjusted Optimum Moisture Content	% mm wet dry t/m ³ %	- - - 7.5% dry	37.5 - - - 7.5% dry	n Capping - 1 STAN 2. ⁻ 10 37.5 - - - 6.5%	MVQ, Donny DARD 14 .0 37.5 - - - - 8.0% dry	37.5 - - - - 8.0% dry	- - - 7.5% dry

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/National standards. Accredited for compliance to ISO/IEC 17025. Accreditation No 9909

mll a

A581ASSIGNED V1.13 MAR 13

		Job No	18077
CIVIL GEOTE	ECHNICAL SERVICES	Report No	18077/R004
6 - 8 Rose Ave	enue, Croydon, Vic 3136	Date Issued	12/02/2018
Client	WINSLOW CONSTRUCTORS PTY LTD (CAMPBELLFIELD)	Tested by	AC
Project	ASTON - STAGE 29	Date tested	12/02/18
Location	CRAGIEBURN	Checked by	JHF

	Layer thickr	ness	150	mm	Time:	10:15:43
	19	20				
	Century Way	Abbington Street				
nade	40	40				
-						
	-					
т						
mm	125	125				
t∕m³	2.12	2.12				
t/m³	2.11	2.09				
%	0.5	1.5				
t/m³			STAN	DARD	, 	
%			10	0.0		
mm	37.5	37.5				
	-	-				
	-	-				
	-	-				
%	-	-				
	0.6%	Q E0/				
	ary	ary				
%	3.5	14.0				
%	99.0	98.0				
	nage ffset m mm t/m³ t/m³ % 5.4.2 t/m³ % t/m³ %	19 Century Way A0 ffset 1.8 east of kerb m 125 t/m³ 2.12 t/m³ 2.12 t/m³ 2.11 % 0.5 S.5.4.2 Assigned V mm 37.5 wet - dry - g.5.% - 9.5% dry % 3.5	19 20 Mage 40 Abbington Street 40 40 40 ffset 1.8 1.8 east west of kerb m - - mm 125 125 t/m³ 2.12 2.12 t/m³ 2.11 2.09 % 0.5 1.5 3 2.12 2.12 t/m³ 2.11 2.09 % 0.5 1.5 3 5 1.5 40mr - - 40mr	19 20 Century Mage Abbington Way Street 1.8 1.8 1.8 east west 0 of kerb of kerb 0 m 125 125 t/m³ 2.12 2.12 t/m³ 2.11 2.09 % 0.5 1.5 $c 5.4.2$ Assigned Values (See Report No 40, 25/01 40mm Capping - $c 5.4.2$ Assigned Values (See Report No 40, 25/01 500 $c 5.4.2$ Assigned Values (See Report No 40, 25/01 500 $c 5.4.2$ Assigned Values (See Report No 40, 25/01 500 $c 5.4.2$ Assigned Values (See Report No 40, 25/01 500 $c 5.4.2$ Assigned Values (See Report No 40, 25/01 500 $c 5.4.2$ Assigned Values (See Report No 40, 25/01 500 $c 5.4.2$ Assigned Values (See Report No 40, 200 500 $c 5.4.2$ Assigned Values (See Report No 40, 200 500 $d 0 0 - 0.000000000000000000000000000000$	19 20 Century Way Abbington Street inage 40 40 ffset 1.8 1.8 east west - of kerb of kerb - m - - mm 125 125 t/m³ 2.12 2.12 t/m³ 2.11 2.09 % 0.5 1.5 C5.4.2 Assigned Values (See Report No 40AMWQAD 40mm Capping - MVQ, Dor 25/01/2018 40mm Capping - MVQ, Dor STANDARD STANDARD t/m³ 2.14 % 10.0	19 20 Century Abbington Way Street fiset 1.8 1.8 east west 0 of kerb of kerb 0 m 125 125 1 mm 125 125 1 mm 125 125 1 t/m³ 2.12 2.12 1 t/m³ 2.11 2.09 1 % 0.5 1.5 1 a 5.4.2 Assigned Values (See Report No 40AMWQADT) 25/01/2018 a 5.4.2 Assigned Values (See Report No 40AMWQADT) 37.5 a 25/01/2018 40mm Capping - MVQ, Donnybrook strandard 37.5 37.5 wet - - - mm 37.5 37.5 - mm 37.5 37.5 - mm 37.5 37.5 - mm 37.5 - - mm 37.5 37.5

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/National standards. Accredited for compliance to ISO/IEC 17025. Accreditation No 9909

mll a

A581ASSIGNED V1.13 MAR 13

		Job No	18077
CIVIL GEOTE	ECHNICAL SERVICES	Report No	18077/R005
6 - 8 Rose Ave	enue, Croydon, Vic 3136	Date Issued	28/03/2018
Client	WINSLOW CONSTRUCTORS PTY LTD (CAMPBELLFIELD)	Tested by	AC
Project	ASTON - STAGE 29	Date tested	28/03/18
Location	CRAGIEBURN	Checked by	JHF

Feature CLASS 3		Layer thickn	iess	170	mm	Time:	09:19:27
AS 12892.1.1 & 5.8.1							
Test No		21	22	23	24	25	26
Location			Scener	ry Drive	<u> </u>	Futur	e Way
Ch	ainage .	190	240	280	340	30	80
	Offset	1.8	1.8	1.8	1.8	1.8	1.8
	011001	south	north	south	north	west	east
		of kerb	of kerb	of kerb	of kerb	of kerb	of kerb
Approximate depth from F.S.L.	т						
Measurement depth	mm	150	150	150	150	150	150
Field wet density	t/m³	2.36	2.36	2.36	2.36	2.39	2.39
Field dry density	t/m³	2.26	2.26	2.25	2.25	2.30	2.32
Field moisture content	%	4.5	4.5	5.0	5.0	4.0	3.0
Material source and location Compactive effort Maximum Day Dopsity	t/m3		20111	_	IFIED	JIUUK	
Maximum Dry Density	t∕m³			2.2	-		
Optimum Moisture Content	%			8.	.0		
Test procedure AS 1289.5.4.1							
Oversize rock retained on sieve	тт	19.0	19.0	19.0	19.0	19.0	19.0
Percent of oversize material	wet	-	-	-	-	-	-
Percent of oversize material	dry	-	-	-	-	-	-
Adjusted Maximum Dry Density	t∕m³	-	-	-	-	-	-
Adjusted Optimum Moisture Content	%	-	-	-	-	-	-
Moisture Variation From		3.5%	3.0%	3.0%	3.0%	4.0%	5.0%
Optimum Moisture Content		dry	dry	dry	dry	dry	dry
		- 1	- ,	- ,		- ,	/
			59.5	61.0	61.0	48.0	40.0
Moisture Ratio (R _m)	%	55.5	59.5	01.0	01.0	40.0	40.0
Moisture Ratio (R_m) Density Ratio (R_D)	%	55.5 99.0	98.5	98.5	98.5	100.5	101.5

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/National standards. Accredited for compliance to ISO/IEC 17025. Accreditation No 9909

mll a

A581ASSIGNED V1.13 MAR 13

COMPACTION ASSESSMENT

		Job No	18077
CIVIL GEOTE	ECHNICAL SERVICES	Report No	18077/R006
6 - 8 Rose Ave	enue, Croydon, Vic 3136	Date Issued	28/03/2018
Client	WINSLOW CONSTRUCTORS PTY LTD (CAMPBELLFIELD)	Tested by	AC
		- · · · · ·	00/00/40
Project	ASTON - STAGE 29	Date tested	28/03/18

Feature CLASS 3		Layer thickne	ess	170	mm	Time:	09:24:36
AS 12892.1.1 & 5.8.1							
Test No		27	28	29	30	31	32
Location		Abbington Street		Dis	tinction Aver	nue	<u></u>
Ch	ainage	40	360	310	260	210	160
	Offset	1.8	1.8	1.8	1.8	1.8	1.8
		east	south	north	south	north	south
		of kerb	of kerb	of kerb	of kerb	of kerb	of kerb
Approximate depth from F.S.L.	т						
Measurement depth	mm	150	150	150	150	150	150
Field wet density	t/m³	2.35	2.35	2.36	2.40	2.36	2.38
Field dry density	t∕m³	2.27	2.28	2.27	2.31	2.25	2.28
Field moisture content	%	3.5	3.0	4.0	4.0	5.0	4.0
Material source and location Compactive effort Maximum Dry Density	t/m³		20mr	m Class 3 - M MODI 2.2	IFIED	orook	
Optimum Moisture Content	<i>۷۱۱۴</i> %			2.2	-		
Test procedure AS 1289.5.4.1							
Oversize rock retained on sieve	mm	19.0	19.0	19.0	19.0	19.0	19.0
Percent of oversize material	mm wet	19.0 -	19.0 -	19.0 -	19.0	19.0 -	19.0
Percent of oversize material Percent of oversize material	wet dry	19.0 - -	19.0 - -	19.0 - -	19.0 - -	19.0 - -	19.0 - -
Percent of oversize material Percent of oversize material Adjusted Maximum Dry Density	wet dry t/m³	-	19.0 - - -	19.0 - - -	19.0 - - -	19.0 - - -	-
Percent of oversize material Percent of oversize material	wet dry	-	19.0 - - - -	-	19.0 - - - -	19.0 - - - -	-
Percent of oversize material Percent of oversize material Adjusted Maximum Dry Density	wet dry t/m³	-	19.0 - - - 5.0%		-	19.0 - - - - 3.0%	
Percent of oversize material Percent of oversize material Adjusted Maximum Dry Density Adjusted Optimum Moisture Content	wet dry t/m³	- - - -	- - - -	- - - -	- - - -	-	- - -
Percent of oversize material Percent of oversize material Adjusted Maximum Dry Density Adjusted Optimum Moisture Content Moisture Variation From	wet dry t/m³	- - - 4.5%	- - - 5.0%	- - - 4.0%	- - - 4.0%	- - - - 3.0%	- - - 4.0%

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/National standards. Accredited for compliance to ISO/IEC 17025. Accreditation No 9909

mll a

A581ASSIGNED V1.13 MAR 13

COMPACTION ASSESSMENT

		Job No	18077
CIVIL GEOTE	ECHNICAL SERVICES	Report No	18077/R007
6 - 8 Rose Ave	enue, Croydon, Vic 3136	Date Issued	28/03/2018
Client	WINSLOW CONSTRUCTORS PTY LTD (CAMPBELLFIELD)	Tested by	AC
Project	ASTON - STAGE 29	Date tested	28/03/18
Location	CRAGIEBURN	Checked by	JHF

Feature CLASS 3		Layer thickness		170	170 mm		09:27:42
AS 12892.1.1 & 5.8.1							
Test No		33	34	35	36	37	38
Location		Century		Broadw	alk Rise		Comman
		Way					Road
Cha	inage	40	180	130	80	30	30
C	offset	1.8	1.8	1.8	1.8	1.8	2
		west	east	west	east	west	north
		of kerb	of kerb	of kerb	of kerb	of kerb	of kerb
Approximate depth from F.S.L.	т						
Measurement depth	тт	150	150	150	150	150	150
Field wet density	t∕m³	2.34	2.34	2.35	2.35	2.34	2.34
Field dry density	t∕m³	2.27	2.25	2.27	2.26	2.25	2.26
Field moisture content	%	3.5	4.0	3.5	3.5	3.5	4.0
Material source and location Compactive effort Maximum Dry Density	t/m³		20mr	m Class 3 - M MOD 2.2	IFIED	orook	
Optimum Moisture Content	<i>v</i> 11° %			8.	-		
Test procedure AS 1289.5.4.1							
Oversize rock retained on sieve	mm	19.0	19.0	19.0	19.0	19.0	19.0
Oversize rock retained on sieve Percent of oversize material	mm wet	19.0 -	19.0	19.0 -	19.0 -	19.0	19.0
Percent of oversize material	wet	-	19.0 - -	19.0 - -		19.0 - -	19.0 -
Percent of oversize material Percent of oversize material	1	19.0 - - -	19.0 - - -	19.0 - - -		19.0 - - -	19.0 - -
Percent of oversize material	wet dry	-	19.0 - - - -	19.0 - - - -	-	19.0 - - - -	19.0 - - - -
Percent of oversize material Percent of oversize material Adjusted Maximum Dry Density	wet dry t/m³			19.0 - - - -	-	19.0 - - - -	
Percent of oversize material Percent of oversize material Adjusted Maximum Dry Density	wet dry t/m³			19.0 - - - 4.5%	-	19.0 - - - - 4.5%	
Percent of oversize material Percent of oversize material Adjusted Maximum Dry Density Adjusted Optimum Moisture Content	wet dry t/m³		- - - -			- - -	- - -
Percent of oversize material Percent of oversize material Adjusted Maximum Dry Density Adjusted Optimum Moisture Content Moisture Variation From	wet dry t/m³	- - - 4.5%	- - - 4.0%	- - - 4.5%	- - - 4.5%	- - - - 4.5%	- - - - 4.0%

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/National standards. Accredited for compliance to ISO/IEC 17025. Accreditation No 9909

mll a

A581ASSIGNED V1.13 MAR 13

		Job No	18077
CIVIL GEOTE	ECHNICAL SERVICES	Report No	18077/R008
6 - 8 Rose Ave	enue, Croydon, Vic 3136	Date Issued	28/03/2018
Client	WINSLOW CONSTRUCTORS PTY LTD (CAMPBELLFIELD)	Tested by	AC
Project	ASTON - STAGE 29	Date tested	28/03/18
Location	CRAGIEBURN	Checked by	JHF

Feature CLASS 3		Layer thickness		170 r	mm	Time:	09:30:42
AS 12892.1.1 & 5.8.1							
Test No		39	40				
Location		Comma	nd Road				
	_		1				
Cł	nainage	80	130				
	Offset	1.8	1.8				
		west	east				
		of kerb	of kerb				
Approximate depth from F.S.L.	т						
Measurement depth	mm	150	150	ļ			
Field wet density	t∕m³	2.34	2.35				
Field dry density	t∕m³	2.27	2.27				
Field moisture content	%	3.5	4.0				
Date of assignment Material source and location Compactive effort Maximum Dry Density	t/m³		20m	m Class 3 - M MODII 2.2	FIED	nybrook	
Optimum Moisture Content	%			8.0	-		
Test procedure AS 1289.5.4.1							
Oversize rock retained on sieve	mm	19.0	19.0				
Percent of oversize material	wet	-	-	├ ──── ↓			
Percent of oversize material	dry	-	-	↓↓			
Adjusted Maximum Dry Density	t/m³	-	-	├ ────┤			
Adjusted Optimum Moisture Content	%	-	-				
Moisture Variation From		4.5%	4.0%				
Optimum Moisture Content		dry	dry				
		,	. ,			I	
Moisture Ratio (R _m)	%	43.0	47.5				
Density Ratio (R_D)	%	99.0	99.0				

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/National standards. Accredited for compliance to ISO/IEC 17025. Accreditation No 9909

mll a

A581ASSIGNED V1.13 MAR 13

COMPACTION ASSESSMENT

		Job No	18077
CIVIL GEOTE	ECHNICAL SERVICES	Report No	18077/R009
6 - 8 Rose Ave	enue, Croydon, Vic 3136	Date Issued	23/04/2018
Client	WINSLOW CONSTRUCTORS PTY LTD (CAMPBELLFIELD)	Tested by	AC
Project	ASTON - STAGE 29	Date tested	20/04/18
Location	CRAGIEBURN	Checked by	JHF

		Layer thickn	ess	130	mm	Time:	11:46:28
AS 12892.1.1 & 5.8.1							
Test No		41	42	43	44	45	46
Location		Century		Broadw	alk Rise		Scenery
		Way					Drive
Cł	nainage	40	180	130	80	30	190
	Offset	1.8	1.8	1.8	1.8	1.8	1.8
		east	west	east	west	east	north
		of kerb	of kerb	of kerb	of kerb	of kerb	of kerb
Approximate depth from F.S.L.	т						
Measurement depth	mm	100	100	100	100	100	100
Field wet density	t/m³	2.35	2.35	2.35	2.35	2.35	2.35
Field dry density	t∕m³	2.25	2.22	2.24	2.23	2.24	2.23
Field moisture content	%	4.5	5.5	5.0	5.5	4.5	5.5
Laboratory Compaction AS 1289.5.2.7 Date of assignment Material source and location	1 & 5.4.2	Assigned V		06/03	/2018	orook	
Date of assignment Material source and location Compactive effort		Assigned V		06/03 m Class 2 - M MOD	/2018 /IVQ, Donnyl IFIED	prook	
Date of assignment Material source and location Compactive effort Maximum Dry Density	1 & 5.4.2	Assigned V		06/03 m Class 2 - N	/2018 /IVQ, Donnyl IFIED 27	prook	
Date of assignment Material source and location Compactive effort Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1	t/m³ %		20mi	06/03 m Class 2 - N MOD 2.2 8.	/2018 /IVQ, Donnył IFIED 27 0		400
Date of assignment Material source and location Compactive effort Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1 Oversize rock retained on sieve	t/m³ %	Assigned V		06/03 m Class 2 - M MOD 2.2	/2018 //VQ, Donnyl IFIED 27 0 19.0	19.0	19.0
Date of assignment Material source and location Compactive effort Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1 Oversize rock retained on sieve Percent of oversize material	t/m³ % mm wet	19.0	20mi	06/03 m Class 2 - N MOD 2.2 8.	/2018 /IVQ, Donnył IFIED 27 0		-
Date of assignment Material source and location Compactive effort Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1 Oversize rock retained on sieve Percent of oversize material Percent of oversize material	t/m ³ % mm wet dry	19.0 - -	20mi	06/03 m Class 2 - N MOD 2.2 8.	/2018 //VQ, Donnyl IFIED 27 0 19.0		19.0 - -
Date of assignmentMaterial source and locationCompactive effortMaximum Dry DensityOptimum Moisture ContentTest procedure AS 1289.5.4.1Oversize rock retained on sievePercent of oversize materialPercent of oversize materialAdjusted Maximum Dry Density	t/m ³ % mm wet dry t/m ³	19.0	20mi	06/03 m Class 2 - N MOD 2.2 8.	/2018 //VQ, Donnyl IFIED 27 0 19.0		-
Date of assignment Material source and location Compactive effort Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1 Oversize rock retained on sieve Percent of oversize material Percent of oversize material	t/m ³ % mm wet dry	19.0 - - -	20mi 19.0 - -	06/03 m Class 2 - M MOD 2.3 8. 19.0 - -	/2018 /IVQ, Donny! IFIED 27 0 19.0 - - -		
Date of assignmentMaterial source and locationCompactive effortMaximum Dry DensityOptimum Moisture ContentTest procedure AS 1289.5.4.1Oversize rock retained on sievePercent of oversize materialPercent of oversize materialAdjusted Maximum Dry Density	t/m ³ % mm wet dry t/m ³	19.0 - - -	20mi 19.0 - -	06/03 m Class 2 - M MOD 2.3 8. 19.0 - -	/2018 /IVQ, Donny! IFIED 27 0 19.0 - - -		
Date of assignment Material source and location Compactive effort Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1 Oversize rock retained on sieve Percent of oversize material Percent of oversize material Adjusted Maximum Dry Density Adjusted Optimum Moisture Content	t/m ³ % mm wet dry t/m ³	19.0 - - - -	20mi 19.0 - - - -	06/03 m Class 2 - N MOD 2.3 8. 19.0 - - - -	/2018 //VQ, Donnyl IFIED 27 0 19.0 - - - -	19.0 - - - -	- - -
Date of assignmentMaterial source and locationCompactive effortMaximum Dry DensityOptimum Moisture ContentTest procedure AS 1289.5.4.1Oversize rock retained on sievePercent of oversize materialPercent of oversize materialAdjusted Maximum Dry DensityAdjusted Optimum Moisture Content	t/m ³ % mm wet dry t/m ³	19.0 - - - 3.5%	20mi 19.0 - - - 2.5%	06/03 m Class 2 - N MOD 2.3 8. 19.0 - - - 3.0%	/2018 //VQ, Donnył IFIED 27 0 19.0 - - - 2.5%	19.0 - - - 3.0%	- - - 2.5%

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/National standards. Accredited for compliance to ISO/IEC 17025. Accreditation No 9909

mll a

A581ASSIGNED V1.13 MAR 13

		Job No	18077
CIVIL GEOTE	CHNICAL SERVICES	Report No	18077/R010
6 - 8 Rose Ave	nue, Croydon, Vic 3136	Date Issued	23/04/2018
Client	WINSLOW CONSTRUCTORS PTY LTD (CAMPBELLFIELD)	Tested by	AC
Ollerit			-
Project	ASTON - STAGE 29	Date tested	20/04/18

		Layer thickn	ess	130	mm	Time:	11:50:39
AS 12892.1.1 & 5.8.1							
Test No	I	47	48	49	50	51	52
Location		Scenery Drive			С	ommand Ro	ad
Ch	ainage	240	290	340	30	80	130
	Offset	1.8	1.8	1.8	1.8	1.8	1.8
		south	north	south	east	west	east
		of kerb	of kerb	of kerb	of kerb	of kerb	of kerb
Approximate depth from F.S.L.	т						
Measurement depth	mm	100	100	100	100	100	100
Field wet density	t∕m³	2.31	2.32	2.33	2.39	2.34	2.39
Field dry density	t∕m³	2.23	2.22	2.23	2.27	2.22	2.27
Field moisture content	%	3.5	4.0	4.5	5.0	5.0	5.5
Date of assignment	& 5.4.2	Assigned V	·	06/03	/2018	-	
Material source and location Compactive effort		Assigned V	·	06/03 m Class 2 - M MOD	/2018 /IVQ, Donnyl IFIED	prook	
Date of assignment Material source and location Compactive effort Maximum Dry Density	t/m³	Assigned V	·	06/03 m Class 2 - M MOD 2.2	/2018 /IVQ, Donnyl IFIED 27	prook	
Date of assignment Material source and location Compactive effort		Assigned V	·	06/03 m Class 2 - M MOD	/2018 /IVQ, Donnyl IFIED 27	prook	
Date of assignment Material source and location Compactive effort Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1	t/m³ %		20mi	06/03 m Class 2 - N MOD 2.2 8.	9/2018 MVQ, Donnył IFIED 27 0		
Date of assignment Material source and location Compactive effort Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1 Oversize rock retained on sieve	t/m³ % mm	Assigned V	·	06/03 m Class 2 - M MOD 2.2	/2018 /IVQ, Donnyl IFIED 27	prook 19.0	19.0
Date of assignment Material source and location Compactive effort Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1 Oversize rock retained on sieve Percent of oversize material	t/m³ % mm wet		20mi	06/03 m Class 2 - N MOD 2.2 8.	9/2018 MVQ, Donnył IFIED 27 0		19.0
Date of assignment Material source and location Compactive effort Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1 Oversize rock retained on sieve Percent of oversize material Percent of oversize material	t/m³ % mm wet dry		20mi	06/03 m Class 2 - N MOD 2.2 8.	9/2018 MVQ, Donnył IFIED 27 0		19.0 -
Date of assignment Material source and location Compactive effort Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1 Oversize rock retained on sieve Percent of oversize material Percent of oversize material Adjusted Maximum Dry Density	t/m ³ % mm wet dry t/m ³	19.0 - - -	20mi 19.0 - -	06/03 m Class 2 - N MOD 2.2 8. 19.0 -	5/2018 AVQ, Donnyt IFIED 27 0 19.0 - - -		19.0 - -
Date of assignment Material source and location Compactive effort Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1 Oversize rock retained on sieve Percent of oversize material Percent of oversize material	t/m³ % mm wet dry	19.0 - -	20mi	06/03 m Class 2 - N MOD 2.2 8. 19.0 -	5/2018 /IVQ, Donny! IFIED 27 0 19.0 - -		19.0 - - - -
Date of assignment Material source and location Compactive effort Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1 Oversize rock retained on sieve Percent of oversize material Percent of oversize material Adjusted Maximum Dry Density	t/m ³ % mm wet dry t/m ³	19.0 - - -	20mi 19.0 - -	06/03 m Class 2 - N MOD 2.2 8. 19.0 -	5/2018 AVQ, Donnyt IFIED 27 0 19.0 - - -		19.0 - - - 2.5%
Date of assignment Material source and location Compactive effort Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1 Oversize rock retained on sieve Percent of oversize material Percent of oversize material Adjusted Maximum Dry Density Adjusted Optimum Moisture Content	t/m ³ % mm wet dry t/m ³	19.0 - - - -	20mi 19.0 - - - -	06/03 m Class 2 - N MOD 2.3 8. 19.0 - - - -	5/2018 AVQ, Donnyt IFIED 27 0 19.0 - - - - -	19.0 - - - -	- - -
Date of assignment Material source and location Compactive effort Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1 Oversize rock retained on sieve Percent of oversize material Percent of oversize material Adjusted Maximum Dry Density Adjusted Optimum Moisture Content Moisture Variation From	t/m ³ % mm wet dry t/m ³	19.0 - - - 4.5%	20mi 19.0 - - - 4.0%	06/03 m Class 2 - N MOD 2.2 8. 19.0 - - - 3.5%	5/2018 AVQ, Donnyl IFIED 27 0 19.0 - - - 3.0%	19.0 - - - 3.0%	- - - 2.5%

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/National standards. Accredited for compliance to ISO/IEC 17025. Accreditation No 9909

mll a

A581ASSIGNED V1.13 MAR 13

		Job No	18077
CIVIL GEOTE	CHNICAL SERVICES	Report No	18077/R011
6 - 8 Rose Ave	nue, Croydon, Vic 3136	Date Issued	23/04/2018
Client	WINSLOW CONSTRUCTORS PTY LTD (CAMPBELLFIELD)	Tested by	AC
Client		rested by	//0
Project	ASTON - STAGE 29	Date tested	20/04/18

		Layer thickn	iess	130	mm	Time:	11:53:27
AS 12892.1.1 & 5.8.1							
Test No		53	54	55	56	57	58
Location		Futur	e Way		Distinctio	n Avenue	
Chai	nage	30	80	160	210	260	310
	ffset	1.8	1.8	1.8	1.8	1.8	1.8
		west	east	south	north	south	north
		of kerb	of kerb	of kerb	of kerb	of kerb	of kerb
Approximate depth from F.S.L.	т	01 11010	0111012	0111012	0111012	0111012	01.110.12
Measurement depth	mm	100	100	100	100	100	100
Field wet density	t∕m³	2.33	2.33	2.43	2.34	2.30	2.34
	t∕m³	2.22	2.24	2.25	2.25	2.22	2.22
Field moisture content	%	4.5	4.5	7.5	4.0	3.5	5.0
Material source and location Compactive effort		06/03/2018 20mm Class 2 - MVQ, Donnybrook MODIFIED					
1				-			
Maximum Dry Density	t/m³			2.2	27		
Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1	t/m³ %			-	27		
Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1 Oversize rock retained on sieve	-	19.0	19.0	2.2	27	19.0	19.0
Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1 Oversize rock retained on sieve Percent of oversize material	% mm wet	19.0	19.0 -	2.2	27 0	19.0 -	19.0
Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1 Oversize rock retained on sieve Percent of oversize material Percent of oversize material	% mm wet dry	19.0 - -	19.0 - -	2.2	27 0	19.0 - -	19.0 - -
Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1 Oversize rock retained on sieve Percent of oversize material Percent of oversize material Adjusted Maximum Dry Density	% mm wet dry t/m ³	-	-	2.2 8. 19.0 - -	27 0	19.0 - - -	- - -
Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1 Oversize rock retained on sieve Percent of oversize material Percent of oversize material	% mm wet dry	-	19.0 - - - -	2.2 8. 19.0 -	27 0	19.0 - - - -	-
Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1 Oversize rock retained on sieve Percent of oversize material Percent of oversize material Adjusted Maximum Dry Density	% mm wet dry t/m ³	-	-	2.2 8. 19.0 - -	27 0	19.0 - - - 4.5%	- - -
Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1 Oversize rock retained on sieve Percent of oversize material Percent of oversize material Adjusted Maximum Dry Density Adjusted Optimum Moisture Content	% mm wet dry t/m ³		- - - -	2.3 8. 19.0 - - -	27 0 19.0 - - - -	- - - -	- - -
Maximum Dry Density Optimum Moisture Content Test procedure AS 1289.5.4.1 Oversize rock retained on sieve Percent of oversize material Percent of oversize material Adjusted Maximum Dry Density Adjusted Optimum Moisture Content Moisture Variation From	% mm wet dry t/m ³	- - - 3.5%	- - - 3.5%	2.3 8. 19.0 - - - 0.0%	27 0 19.0 - - - 4.0%	- - - - 4.5%	- - - 3.0%

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/National standards. Accredited for compliance to ISO/IEC 17025. Accreditation No 9909

mll a

A581ASSIGNED V1.13 MAR 13

		Job No	18077
CIVIL GEOTE	ECHNICAL SERVICES	Report No	18077/R012
6 - 8 Rose Ave	enue, Croydon, Vic 3136	Date Issued	23/04/2018
Client	WINSLOW CONSTRUCTORS PTY LTD (CAMPBELLFIELD)	Tested by	AC
Project	ASTON - STAGE 29	Date tested	20/04/18
Location	CRAGIEBURN	Checked by	JHF

Feature CLASS 2		Layer thickn	ess	130	mm	Time:	11:58:34
AS 12892.1.1 & 5.8.1							
Test No		59	60				
Location		Distinction	Abbington				
		Avenue	Street				
C	hainage	360	40				
	Offset	1.8	1.8				
		south	east				
		of kerb	of kerb				
Approximate depth from F.S.L.	т						
Measurement depth	mm	100	100				
Field wet density	t∕m³	2.33	2.35				
Field dry density	t∕m³	2.23	2.22				
Field moisture content	%	5.0	5.5				
Material source and location Compactive effort Maximum Dry Density	t/m³		20mi	m Class 2 - M MOD 2.2	IFIED	nybrook	
Optimum Moisture Content	%			8.			
Test procedure AS 1289.5.4.1							
Oversize rock retained on sieve	mm	19.0	19.0				
Percent of oversize material	wet	-	-				
Percent of oversize material	dry	-	-				
Adjusted Maximum Dry Density	t∕m³	-	-				
Adjusted Optimum Moisture Content	%	-	-				
Moisture Variation From		3.0%	2.0%				
Optimum Moisture Conten	t	dry	dry				
Moisture Ratio (R _m)	%	60.0	73.5				

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/National standards. Accredited for compliance to ISO/IEC 17025. Accreditation No 9909

mll a

A581ASSIGNED V1.13 MAR 13